Glasgow lab

Glasgow lab

Department of Biological Sciences at Brock University in St. Catharines, Ontario, Canada.

Guidance cues

Guidance cues are conserved proteins that are required for neurodevelopment. Interestingly, they are still expressed in the adult brain, and play key roles in synaptic transmission underlying learning and memory formation.

Synaptic plasticity

Learning and memory formation requires the constant reorganization of synapses, highly-specialized sites of chemical and electrical communication in the brain. This involves not only molecular shuffling but also structural changes at the level of individual neurons.

Spatial memory

Changes in how brain cells communicate with one another can impact network function that underlies memory formation. These synaptic alterations can result in different spatial representations, called cognitive maps, but how guidance cues impact these maps remains unclear.

Autism Spectrum Disorder

Understanding the molecular mechanisms underlying synaptic dysfunction in autism spectrum disorder (ASD), a heterogeneous behaviourally-defined neurodevelopmental disorder that is characterized by repetitive behaviours, impaired social interaction, and perturbation of communication, is a key goal of my research program. ASD patients also show impaired memory consolidation, suggesting dysfunction in cellular and molecular mechanisms underlying synaptic transmission and plasticity. Interestingly, a number of genes required for guidance cue signaling have been linked to neurodevelopmental pathophysiologies associated with abnormal memory function, including ASD and Fragile X syndrome. Our research program will evaluate the role of guidance cues in synaptic transmission, and explore how this group of proteins may contribute to pervasive developmental disorders such as ASD.


Publications

Google Scholar : https://scholar.google.ca/citations?user=YRlJn1sAAAAJ

  1. Glasgow, S. D., Wong, E. W., Beamish, I. V., Lancon, K., Gibon, J., Séguéla, P., Ruthazer, E. S., & Kennedy, T. E. Acetylcholine synergizes with netrin-1 to drive persistent firing in the entorhinal cortex. Posted July 9th, 2020. https://doi.org/10.1101/2020.07.08.194274. Submitted. 
  2. Glasgow, S. D., Wong, E. W., Thompson-Steckel, G., Séguéla, P., Ruthazer, E. S., & Kennedy, T. E. Pre- and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Molecular Brain. 13 (56) 1-20. 
  3. Glasgow, S. D., Ruthazer, E. S., & Kennedy, T. E. (2020) Guiding synaptic plasticity: novel roles for netrin-1 in synaptic plasticity and memory formation in the adult brain. Invited, Journal of Physiology. In press. doi: 10.1113/JP278704.
  4. Glasgow, S. D., McPhedrain, R., Madranges, J. F., Kennedy, T. E., & Ruthazer, E. S. (2019) Approaches and limitations in the investigation of synaptic transmission and plasticity. Invited, Frontiers in Synaptic Neuroscience. 11 (20) 1-16.
  5. Wong, E. W.*, Glasgow, S. D.*, Trigiani, L. J., Chitsaz, D., Rymar, V., Sadikot, A., Ruthazer, E. S., Hamel, E., & Kennedy, T. E. (2019) Spatial memory formation requires netrin-1 expression by neurons in the adult mammalian brain. Learning and Memory. 26 (3), 77-83. * indicates equal contribution / co-first author.
  6. Glasgow, S. D., Labrecque, S., Beamish, I. V., Aufmkolk, S., Gibon, J., Han, D., Harris, S. N., Wiseman, P. W., McKinney, R. A., Séguéla, P., De Koninck, P., Ruthazer, E. S., & Kennedy, T. E. (2018) Activity-dependent netrin-1 secretion drives synaptic insertion of GluA1-containing AMPA receptors in the hippocampus. Cell Reports. 25 (1), 168-182.e6
  7. Boyce, R., Glasgow, S. D., Williams, S., & Adamantidis, A. R. (2016) Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. 352 (6287), 812-816.
  8. Munz, M., Gobert, D., Higenell, V., Van Horn, M. R., Glasgow S. D., Schohl, A., & Ruthazer, E. S. (2014) Using two-photon intravital imaging to study developmental plasticity of neural circuits. Microscopy and Microanalysis. 20 (S3), 1342-1343.
  9. Goldman, J., Ashour, M., Magdesian, M., Tritsch, N., Christofi, N., Chemali, R., Stern, Y., Thompson-Steckel, G., Harris, S., Gris, P., Glasgow, S. D., Grutter, P., Bouchard, J-F., Ruthazer, E. S., Stellwagen, D., & Kennedy, T. E. (2013) Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly. Journal of Neuroscience. 33 (44), 17278-89. 
  10. Jego, S., Glasgow, S. D., Gutierrez-Herrara, C., Ekstrand, M., Reed, S. J., Boyce, R., Friedman, J., Burdakov, D., & Adamantidis, A. R. (2013).  Optogenetic identification of a rapid-eye movement (REM) sleep modulatory circuit in the hypothalamus.  Nature Neuroscience. 16 (11): 1637-43.
  11. Horn, K. E., Glasgow, S. D., Gobert, D., Bull, S. J., Luk, T., Girgis, J., Tremblay, M. E., McEachern, D., Bouchard, J. F., Haber, M., Hamel, E., Krimpenfort, P., Murai, K. K., Berns, A., Doucet, G., Chapman, C. A., Ruthazer, E. S., Kennedy, T. E. (2013). DCC expression by neurons regulates synaptic plasticity in the adult brain. Cell Reports. 3: 173-185.
  12. Glasgow, S. D., & Chapman, C. A. (2013). Muscarinic depolarization of layer II neurons of the parasubiculum.. PLoS One. 8 (3): 1-14.
  13. Glasgow, S. D., Glovaci, I., Karpowicz, L., & Chapman, C. A. (2012).  Cholinergic suppression of excitatory synaptic transmission in layers II/III of the parasubiculum. Neuroscience. 201 (1) 1-11.
  14. Glasgow, S. D., & Chapman, C. A. (2008). Conductances mediating intrinsic theta-frequency membrane potential oscillations in layer II parasubicular neurons. Journal of Neurophysiology. 100 (5): 2746-56.
  15. Kourrich, S., Glasgow, S. D., Caruana, D. A., & Chapman, C. A. (2008).  Postsynaptic signals mediating induction of long-term synaptic depression in the entorhinal cortex.  Neural Plasticity. 2008:840374.
  16. Glasgow, S. D., & Chapman, C. A. (2007). Local generation of theta-frequency EEG activity in the parasubiculum. Journal of Neurophysiology. 97 (6): 3868-3879.
  17. Bland, B.H.  DeClerck, S., Jackson, J., Glasgow, S. D., and Oddie, S.D. (2007) Septohippocampal properties of N-Methyl-D-Aspartate–induced theta-band oscillation and synchrony. Synapse. 61 (3): 185-197.

Book chapters

  1. Glasgow, S. D., Gutierrez Herrera, C., & Adamantidis, A. R. (2017) Behavioral phenotyping using optogenetic technology. In Neuro-Phenome: Cutting-edge Approaches and Technologies in Neurobehavioral Genetics (V. Tucci, Ed.). Oxford: Wiley-Blackwell. Invited.

Team members

Stephen D. Glasgow, PhD


Contact

Get in Touch

1812 Sir Isaac Brock Way
Department of Biological Sciences, Mackenzie Chown F234
Brock University
St. Catharines, Ontario L2S 3A1
Canada
electronic: sglasgow (at) brocku (dot) ca

Send Me a Message