Glasgow lab

Department of Biological Sciences at Brock University in St. Catharines, Ontario, Canada.

Mission

The primary objective of our research program is to elucidate the biological mechanisms underlying structural and functional synaptic plasticity and, more broadly, to address fundamental unresolved questions of how the mammalian brain consolidates and maintains memories at molecular, cellular, and network levels to adapt and direct on-going movement and behaviour. We employ a combination of scientific techniques, including in vivo and in vitro electrophysiology, optogenetics, live cellular imaging, molecular biology, mouse genetics, and behavioral analyses to understand how the brain consolidates memory.

We are always looking for motivated students and trainees at all levels to join the lab!

Techniques and approaches

The primary objective of our research program is to elucidate the biological mechanisms underlying structural and functional synaptic plasticity and, more broadly, to address fundamental unresolved questions of how the mammalian brain consolidates and maintains memories at molecular, cellular, and network levels to adapt and direct on-going movement and behaviour.

We employ a combination of scientific techniques, including in vivo and in vitro electrophysiology, optogenetics, live cellular imaging, molecular biology, mouse genetics, and behavioral analyses to understand how the brain consolidates memory.

We are always looking for motivated students and trainees at all levels to join the lab!

Areas of research

Guidance cues

Guidance cues are conserved proteins that are required for neurodevelopment. Interestingly, they are still expressed in the adult brain, and play key roles in synaptic transmission underlying learning and memory formation.

Synaptic plasticity

Learning and memory formation requires the constant reorganization of synapses, highly-specialized sites of chemical and electrical communication in the brain. This involves not only molecular shuffling but also structural changes at the level of individual neurons.

Neuromodulation

How glutamatergic excitatory synapses function can be heavily modulated by elements outside the synapse proper – namely by changes in neuromodulatory tone. Changes in intrinsic excitability driven by these neuromodulators may alter how circuits emerge and function.

Spatial memory

Changes in how brain cells communicate with one another can impact network function that underlies memory formation. These synaptic alterations can result in different spatial representations, called cognitive maps, but how guidance cues impact these maps remains unclear.

Publications

Google Scholar : https://scholar.google.ca/citations?user=YRlJn1sAAAAJ

  1. Clement, J. P., Al-Alwan, L., Glasgow, S. D., Stolow, A., Ding, Y., Quevedo Melo, T., Khayachi, A., Liu, Y., Hellmund, M., Haag, R., Milnerwood, A., Grutter, P., & Kennedy, T. E. Dendritic polyglycerol amine: An enhanced substrate to support long-term neural cell culture. ASN Neuro. 14 (1) 1-17.
  2. Glasgow, S. D., Wong, E. W., Beamish, I. V., Lancon, K., Gibon, J., Séguéla, P., Ruthazer, E. S., & Kennedy, T. E. Acetylcholine synergizes with netrin-1 to drive persistent firing in the entorhinal cortex. Posted July 9th, 2020. https://doi.org/10.1101/2020.07.08.194274. Submitted. 
  3. Glasgow, S. D., Wong, E. W., Thompson-Steckel, G., Séguéla, P., Ruthazer, E. S., & Kennedy, T. E. Pre- and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Molecular Brain. 13 (56) 1-20. 
  4. Glasgow, S. D., Ruthazer, E. S., & Kennedy, T. E. (2020) Guiding synaptic plasticity: novel roles for netrin-1 in synaptic plasticity and memory formation in the adult brain. Invited, Journal of Physiology. In press. doi: 10.1113/JP278704.
  5. Glasgow, S. D., McPhedrain, R., Madranges, J. F., Kennedy, T. E., & Ruthazer, E. S. (2019) Approaches and limitations in the investigation of synaptic transmission and plasticity. Invited, Frontiers in Synaptic Neuroscience. 11 (20) 1-16.
  6. Wong, E. W.*, Glasgow, S. D.*, Trigiani, L. J., Chitsaz, D., Rymar, V., Sadikot, A., Ruthazer, E. S., Hamel, E., & Kennedy, T. E. (2019) Spatial memory formation requires netrin-1 expression by neurons in the adult mammalian brain. Learning and Memory. 26 (3), 77-83. * indicates equal contribution / co-first author.
  7. Glasgow, S. D., Labrecque, S., Beamish, I. V., Aufmkolk, S., Gibon, J., Han, D., Harris, S. N., Wiseman, P. W., McKinney, R. A., Séguéla, P., De Koninck, P., Ruthazer, E. S., & Kennedy, T. E. (2018) Activity-dependent netrin-1 secretion drives synaptic insertion of GluA1-containing AMPA receptors in the hippocampus. Cell Reports. 25 (1), 168-182.e6
  8. Boyce, R., Glasgow, S. D., Williams, S., & Adamantidis, A. R. (2016) Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. 352 (6287), 812-816.
  9. Munz, M., Gobert, D., Higenell, V., Van Horn, M. R., Glasgow S. D., Schohl, A., & Ruthazer, E. S. (2014) Using two-photon intravital imaging to study developmental plasticity of neural circuits. Microscopy and Microanalysis. 20 (S3), 1342-1343.
  10. Goldman, J., Ashour, M., Magdesian, M., Tritsch, N., Christofi, N., Chemali, R., Stern, Y., Thompson-Steckel, G., Harris, S., Gris, P., Glasgow, S. D., Grutter, P., Bouchard, J-F., Ruthazer, E. S., Stellwagen, D., & Kennedy, T. E. (2013) Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly. Journal of Neuroscience. 33 (44), 17278-89. 
  11. Jego, S., Glasgow, S. D., Gutierrez-Herrara, C., Ekstrand, M., Reed, S. J., Boyce, R., Friedman, J., Burdakov, D., & Adamantidis, A. R. (2013).  Optogenetic identification of a rapid-eye movement (REM) sleep modulatory circuit in the hypothalamus.  Nature Neuroscience. 16 (11): 1637-43.
  12. Horn, K. E., Glasgow, S. D., Gobert, D., Bull, S. J., Luk, T., Girgis, J., Tremblay, M. E., McEachern, D., Bouchard, J. F., Haber, M., Hamel, E., Krimpenfort, P., Murai, K. K., Berns, A., Doucet, G., Chapman, C. A., Ruthazer, E. S., Kennedy, T. E. (2013). DCC expression by neurons regulates synaptic plasticity in the adult brain. Cell Reports. 3: 173-185.
  13. Glasgow, S. D., & Chapman, C. A. (2013). Muscarinic depolarization of layer II neurons of the parasubiculum.. PLoS One. 8 (3): 1-14.
  14. Glasgow, S. D., Glovaci, I., Karpowicz, L., & Chapman, C. A. (2012).  Cholinergic suppression of excitatory synaptic transmission in layers II/III of the parasubiculum. Neuroscience. 201 (1) 1-11.
  15. Glasgow, S. D., & Chapman, C. A. (2008). Conductances mediating intrinsic theta-frequency membrane potential oscillations in layer II parasubicular neurons. Journal of Neurophysiology. 100 (5): 2746-56.
  16. Kourrich, S., Glasgow, S. D., Caruana, D. A., & Chapman, C. A. (2008).  Postsynaptic signals mediating induction of long-term synaptic depression in the entorhinal cortex.  Neural Plasticity. 2008:840374.
  17. Glasgow, S. D., & Chapman, C. A. (2007). Local generation of theta-frequency EEG activity in the parasubiculum. Journal of Neurophysiology. 97 (6): 3868-3879.
  18. Bland, B.H.  DeClerck, S., Jackson, J., Glasgow, S. D., and Oddie, S.D. (2007) Septohippocampal properties of N-Methyl-D-Aspartate–induced theta-band oscillation and synchrony. Synapse. 61 (3): 185-197.

Book chapters

  1. Glasgow, S. D., Gutierrez Herrera, C., & Adamantidis, A. R. (2017) Behavioral phenotyping using optogenetic technology. In Neuro-Phenome: Cutting-edge Approaches and Technologies in Neurobehavioral Genetics (V. Tucci, Ed.). Oxford: Wiley-Blackwell. Invited.

Team members

Stephen D. Glasgow, PhD

  • Zoe Gagnon, MSc
  • Emily Kacur, BSc Honours
  • John Hansler, BSc Honours

Contact

Get in Touch

1812 Sir Isaac Brock Way
Department of Biological Sciences, Mackenzie Chown F234
Brock University
St. Catharines, Ontario L2S 3A1
Canada
electronic: sglasgow (at) brocku (dot) ca

Send Me a Message